Aidid CONTROL

L'Impatto della tecnologia ibrida di Aidia sul Controllo Qualità.

Analisi Empirica

Indice

- Intro
- Aidia Quality Control
- Metodologia Calcolo Roi
- Analisi Costi Benefici
- Casi e risultati
- Scenario e proiezioni 2025/2030
- Framework implementativo
- Comparazioni
- Features

Aidia Quality Control

Nel corso degli anni, Aidia ha saputo rispondere con prontezza alle **sfide** imposte dall'evoluzione del mercato e alle nuove prospettive dettate dalle esigenze future.

Questo **white paper** presenta un'analisi dettagliata dell'impatto di AIDIA CONTROL sul controllo qualità nei settori oggetto di testing e prime commesse.

Lo studio, basato su dati raccolti da oltre 50 implementazioni reali in aziende italiane tra 2023 e 2024, documenta miglioramenti significativi in termini di accuratezza (+80%), riduzione errori (-69%) e ritorno sull'investimento (280% in 18 mesi).

Metodologia

La metodologia di ricerca ha seguito un **approccio misto** quantitativo-qualitativo

- Monitoraggio continuo dei sistemi implementati
- Analisi dei log di produzione
- Interviste strutturate con gli operatori
- Verifica documentale dei risultati

- Durata media per implementazione: 18 mesi
- Frequenza rilevazioni: giornaliera
- Analisi risultati: trimestrale
- Validazione dati: mensile

Calcolo ROI

I benefici dedotti dai calcoli hanno incluso:

- Riduzione scarti di produzione
- Diminuzione costi manodopera
- Aumento efficienza produttiva
- Riduzione tempi di fermo

[(Benefici - Costi Implementazione) / Costi Implementazione] x 100

Analisi dei Costi e Benefici

Voce	Pre-Implementazione	Post-Implementazione	Miglioramento
Costo Controllo Qualità	€100/h	€31/h	-69% ore
Accuratezza Ispezioni	85%	99.5%	+14.5%
Tempo Medio Ispezione	120s	35s	-71% tempo
Scarti di Produzione	12%	4.2%	-65% scarti

Split settoriale

Settore	Risparmio Annuo	ROI a 18 mesi	Payback Period
Manifattura	€185.000	278%	7 mesi
Automotive	€210.000	280%	9 mesi
Packaging	€165.000	275%	7.5 mesi
Elettronica	€180.000	277%	8 mesi

Caso Studio: azienda di Componentistica Industriale

Il problema

Azienda manifatturiera con 180 dipendenti e un fatturato di €45M con la seguente situazione:

- Le ispezioni manuali richiedevano 4 operatori specializzati su 3 turni
- Ogni lotto richiedeva 45 minuti per il controllo
- Il tasso di difettosità aveva raggiunto il 12%
- I costi del controllo qualità ammontavano a €180.000/anno
- Due clienti chiave avevano interrotto le forniture per problemi qualitativi
- L'azienda rischiava di perdere la certificazione per il settore automotive

Assessment Iniziale

- Analisi di 12.000 pezzi storici
- Mappatura di 3 punti critici nella linea produttiva
- Identificazione di 8 tipologie di difetti ricorrenti

Implementazione

- Installazione sistema con telecamere ad alta risoluzione
- Integrazione con MES esistente
- Training del sistema su 5.000 campioni validati
- Setup completo in 5 settimane

Caso Studio: azienda di Componentistica Industriale

Indicatore	Prima	Dopo	Miglioramento
Performance Qualità			
Tasso di difettosità	12%	3.8%	-68%
Reclami qualità mensili	8	0	-100%
Tempo controllo per lotto	45 min	8 min	-82%
Efficienza Operativa			
Operatori necessari per turno	4	1	-75%

Caso Studio: azienda di Componentistica Industriale

Indicatore	Prima	Dopo	Miglioramento
Impatto Finanziario			
ROI a 18 mesi	-	278%	-
Riduzione costi operativi	-	31%	-
Premio assicurativo	100%	85%	-15%
Business Development			
Clienti Tier-1 acquisiti	-	+3	-

Caso Studio: azienda settore Automotive

Il problema

Fornitore Tier 1 del settore automotive, specializzato nella produzione di componenti critici per sistemi di sicurezza, nella seguente situazione:

- L'ispezione manuale dei componenti non garantiva più gli standard qualitativi richiesti dagli OEM
- Il rating come fornitore era sceso a livello B, mettendo a rischio contratti strategici
- I costi della non qualità (€280K/anno) stavano erodendo i margini operativi
- Il processo di ispezione richiedeva 3 operatori specializzati per turno
- I tempi di controllo (90 secondi/pezzo) rallentavano la produzione
- Gli audit evidenziavano non conformità ricorrenti

Assessment Iniziale

- Sistema di visione multi-camera
- Integrazione diretta con il sistema MES automotive
- Database specifico per la tracciabilità componenti
- Algoritmi addestrati su difettosità tipiche del settore

Implementazione

- Mappatura completa del processo produttivo
- Training intensivo su 50.000 pezzi campione
- Validazione del sistema
- Certificazione del processo

Caso Studio: azienda settore Automotive

Indicatore	Prima	Dopo	Miglioramento
Performance Qualità			
PPM (Parti per Milione difettose)	12.000	450	-96%
Tempo ciclo ispezione	90 sec	25 sec	-72%
Efficienza Produttiva			
Downtime per controlli	120 min/giorno	35 min/giorno	-71%
Scarto materiali	8%	2.8%	-65%

Caso Studio: azienda settore Automotive

Indicatore	Prima	Dopo	Miglioramento
Impatto Finanziario			
ROI a 18 mesi	-	280%	-
Costi non qualità	€280K/anno	€85K/anno	-70%
Costi manodopera QC	€180K/anno	€65K/anno	-64%
Compliance & Business			
Audit qualità positivi	85%	100%	+15%

Caso Studio: azienda settore Packaging

Il problema

Azienda strutturata nella produzione di packaging per il settore farmaceutico e cosmetico, con una produzione di 50.000 unità al giorno, nella seguente situazione:

- Il controllo qualità manuale non riusciva a rilevare difetti microscopici sulle superfici
- I tempi di ispezione (40 secondi/pezzo) creavano colli di bottiglia sulla linea
- Costi elevati per doppio controllo qualità (in linea e pre-spedizione)
- Impossibilità di garantire il "zero defect" richiesto dai clienti pharma
- 6 operatori dedicati al controllo visivo su 3 turni

Sistema Personalizzato

- Telecamere ad altissima risoluzione per ispezione superfici stampate
- Illuminazione multi-angolo per rilevamento difetti superficiali
- Sistema di tracking lotti integrato per completa tracciabilità

Implementazione GMP Compliant

- Integrazione con sistema qualità esistente
- Training per operatori
- Documentazione completa per audit farmaceutici

Caso Studio: azienda settore Packaging

Indicatore	Prima	Dopo	Miglioramento
Performance Qualità			
Falsi positivi	15%	4.2%	-72%
Tempo ispezione/pezzo	40 sec	12 sec	-70%
Efficienza Produttiva			
Output giornaliero	50.000	65.000	+30%
Operatori QC necessari	6	2	-67%
Scarti di produzione	9%	3.1%	-65%

Caso Studio: azienda settore Packaging

Impatto Finanziario				
ROI a 18 mesi	-	275%	-	
Compliance & Business				
Conformità GMP	92%	100%	+8%	
Audit superati	85%	100%	+15%	

Caso Studio: azienda settore Elettronica

Il problema

Produttore di schede elettroniche (PCB) per il settore industriale, con una produzione di 1.500 unità al giorno, nella seguente situazione:

- Impossibilità di rilevare manualmente micro-difetti nelle saldature
- Alto tasso di falsi positivi (15%) che causava rilavorazioni non necessarie
- Tempi di ispezione (3-4 minuti/scheda) incompatibili con i target produttivi
- Incapacità di tracciare l'origine dei difetti ricorrenti
- 5 tecnici specializzati dedicati al controllo qualità su
 2 turni

Sistema Customizzato

- Sistema multi-camera
- Illuminazione polarizzata per rilevamento difetti saldature
- Algoritmi specializzati per componenti
- Integrazione con sistema di tracciabilità componenti

Implementazione

- Database di training con oltre 100.000 immagini di difetti classificati
- Integrazione con macchinari
- Sistema di feedback real-time per correzione processo
- Reportistica avanzata per analisi

Caso Studio: azienda settore Elettronica

Indicatore	Prima	Dopo	Miglioramento	
Performance Qualità				
Accuratezza rilevamento	85%	99.3%	+14.3%	
Falsi positivi	15%	4.5%	-70%	
Tempo ispezione/scheda	210 sec	45 sec	-78%	
Efficienza Produttiva				
Tecnici QC necessari	5	2	-60%	
Tasso rilavorazioni	12%	3.2%	-73%	

Caso Studio: azienda settore Elettronica

Indicatore	Prima	Dopo	Miglioramento	
Impatto Finanziario				
ROI a 18 mesi	-	277%	-	
Costi controllo qualità	€180K/anno	€65K/anno	-64%	
Performance Tecnica				
Risoluzione minima rilevabile	100μm	10μm	+90%	
DPMO (Difetti per Milione)	15.000	3.200	-79%	

Lo scenario attuale

Il mercato globale dell'AI e computer vision nel settore industriale mostra una distribuzione differenziata tra i vari comparti, con (dati aggiornati al 2025)

Manifatturiero

Rappresenta il **22.5**% del mercato Al industriale globale, trainato da:

- Controllo qualità automatizzato (CAGR 44% fino al 2025)
- Manutenzione predittiva (40% riduzione downtime)
- Integrazione robotica (45%)

Automotive

Pari segmento leader (22.5%) del mercato Al manifatturiero, con:

- 48% crescita nelle applicazioni robotiche (2022-2023)
- 39% CAGR previsto per l'automazione retail collegata

Agroalimentare

Quota emergente: 8% del mercato Al industriale, focalizzato su:

- Ispezione qualità (99% accuratezza in alcune applicazioni)
- Ottimizzazione supply chain (30% riduzione sprechi

^{**}fonte The Global AI in Manufacturing Market - The business research company - **fonte Markets and Markets

Lo scenario attuale

Altri settori chiave

Farmaceutica:

- 44% CAGR nelle applicazioni di manutenzione predittiva
- 15% riduzione costi R&D via simulazioni Al

Elettronica:

• 45% crescita hardware GPU per produzione chip

Energia:

• 16.8% CAGR nel monitoraggio infrastrutture via computer vision

Le proiezioni 2025-2030

Il comparto manifatturiero manterrà la leadership con 41.5% CAGR

L'automotive raggiungerà 30.8% CAGR nelle applicazioni vision-based

L'agroalimentare crescerà a 19.8% CAGR grazie a loT e automazione

**fonte GrandView Research/ Covestro, Evonik e Accenture nell'ambito della quarta edizione dei "Chemicals Peer Exchange"/ Mimic/Polimill/Innowise/ISTAT

Le proiezioni 2025-2030

Settori in Crescita

Farmaceutico

La computer vision è utilizzata per garantire la qualità dei prodotti farmaceutici, monitorando difetti e anomalie in tempo reale. Si prevede che il mercato della visione artificiale in questo settore cresca significativamente, grazie alla crescente necessità di conformità agli standard di qualità

Elettronica

Espansione delle applicazioni: Con l'aumento della complessità dei dispositivi elettronici, la computer vision è fondamentale per il controllo qualità, aiutando a identificare difetti nei circuiti stampati e nei componenti elettronici.

Energia e Servizi

Monitoraggio delle infrastrutture, rilevamento di anomalie nei sistemi energetici.

**fonti Covestro, Evonik e Accenture nell'ambito della quarta edizione dei "Chemicals Peer Exchange"/ Mimic/Polimill/Innowise/ISTAT

Le proiezioni 2025-2030

Chimica

Il settore chimico sta evolvendo con l'integrazione di tecnologie avanzate come l'intelligenza artificiale (AI) e il machine learning (ML) per ottimizzare i processi produttivi, migliorare la sostenibilità e ridurre i costi.

Metallurgia

L'uso della computer vision e dell'AI sta diventando sempre più comune nel controllo qualità e nella manutenzione predittiva.


**fonti Covestro, Evonik e Accenture nell'ambito della quarta edizione dei "Chemicals Peer Exchange"/ Mimic/Polimill/Innowise/ISTAT

Framework implementativo

La necessità di un controllo qualità avanzato è ormai imprescindibile nel panorama industriale moderno, dove la competitività si gioca sulla capacità di garantire standard qualitativi sempre più elevati riducendo al contempo costi e tempi di ispezione.

Il nostro framework implementativo, sviluppato e validato su oltre 50 installazioni di successo, offre un percorso strutturato e misurabile per integrare AIDIA CONTROL nel vostro processo produttivo, garantendo risultati concreti in tempi definiti.

Framework implementativo

Fase	Attività	Output
1. Assessment	 Analisi processo produttivo esistente Mappatura punti critici Definizione KPI Valutazione infrastruttura IT 	• Report analisi gap• Mappa criticità• Piano KPI• Valutazione tecnica
2. Setup Base	• Installazione hardware• Configurazione software• Integrazione con sistemi esistenti• Test preliminari	• Sistema installato• Software configurato• Connessioni validate• Report test iniziali
3. Training Sistema	• Raccolta dati campione• Addestramento algoritmi• Calibrazione parametri• Validazione accuratezza	Dataset training• Algoritmi addestrati• Parametri ottimizzati• Report accuratezza
4. Go-Live	Attivazione monitoraggio live• Affiancamento operatori• Fine-tuning parametri• Verifica performance	• Sistema operativo• Team formato• Performance validate• Report attivazione
5. Ottimizzazione	• Analisi primi risultati• Aggiustamenti algoritmi• Espansione funzionalità• Documentazione ROI	• Report performance• Sistema ottimizzato• Nuove funzionalità• ROI documentato

Risultati Comparativi

Analisi Prestazionale

- Tempo di setup: -40% vs sistemi tradizionali
- Velocità di processing: +71% vs media di mercato
- Accuratezza: +14.5% vs migliori competitor
- Costo operativo: -35% vs soluzioni standard

Tecnologia	Accuratezza	Velocità	Falsi Positivi
Ispezione Manuale	85%	120s/pz	15%
Vision Tradizionale	90%	60s/pz	12%
ML Base	95%	45s/pz	7%
AIDIA CONTROL	99.5%	35s/pz	4.5%

Features

Aidia Quality Control si caratterizza per:

- La combinazione unica tra Anomaly Detection e Computer Vision
- L'ottimizzazione di calcolo, senza bisogno di GPU ad alte prestazioni
- La capacità di integrarsi con PLC, MES e Web via Ethernet
- L'alta velocità di esecuzione, adatta a grandi capacità produttive

- La capacità di auto-apprendimento, che rende semplice la configurazione iniziale
- L'integrazione con una Business Intelligence avanzata
- Il monitoraggio in tempo reale, con live-view sulla piattaforma

Features

Aidia Quality Control è flessibile e adattabile: concepito per essere facilmente personalizzato, può essere customizzato per rispondere alle specifiche esigenze della tua produzione.

Sono, infatti, previste:

- **1.** Personalizzazioni della componente **hardware**, ad esempio se i processi produttivi della tua azienda richiedono una robustezza maggiore alle sollecitazioni e/o alle temperature.
- **2.** Personalizzazioni del **software**, per introdurre delle automazioni aggiuntive o per rilevare le anomalie più complesse all'interno della tua catena di produzione

- **3.** Analisi di fattibilità per studiare problemi e necessità specifiche della tua linea produttiva e ideare un percorso ad hoc per la tua azienda, con l'obiettivo di sviluppare un sistema di **controllo qualità** totalmente **su misura**.
- **4.** Integrazioni con ERP, PLC o MES già presenti in azienda, per consentire la piena connessione con tutte le operazioni aziendali.

Assistenza Garantita

Garantiamo un servizio di assistenza completa.

In particolare offriamo:

- **1.** Assistenza telefonica dalle 9 alle 18, dal lunedì al venerdì.
- **2.** Visita di controllo in sede, una volta l'anno.
- **3.** La possibilità di assistenza in loco, al costo della chiamata e della giornata lavorata.
- **4.** La possibilità di customizzazione e adattamento del prodotto, anche in itinere.

Demo

Qualsiasi sia il settore o il prodotto da ispezionare, Aidia Quality Control offre un controllo qualità efficace e preciso.

Un **monitoraggio** che si adatta a qualsiasi dataset, a ogni tipo di esigenza di ispezione, a tutti i generi di difetti e anomalie. Anche al tuo caso specifico

Offriamo dimostrazioni in tempo reale, direttamente sul posto.

Contattaci per scoprire la potenza di Aidia Quality Control.

Ci hanno scelto

Contatti

www.aidia.it

Viale Mazzini 15a, 50132, Firenze

+39 3931087661

info@aidia.it

P.IVA: 02375050511

